The antimicrobial activity of chemerin-derived peptide p4 requires oxidative conditions

Autor: Arkadiusz Borek, Urszula Godlewska, Oliwia Bochenska, Aneta Zegar, Patryk Kuleta, Piotr Brzoza, Agnieszka Morytko, Bernadetta Bilska, Artur Osyczka, Joanna Cichy, Elżbieta Pyza, Andrzej Kozik, Krzysztof Murzyn, Brian A. Zabel
Jazyk: angličtina
Rok vydání: 2018
Předmět:
0301 basic medicine
Cytochrome
antimicrobial peptide (AMP)
Human skin
MRSA
Skin infection
host-pathogen interaction
medicine.disease_cause
Biochemistry
Mice
chemotaxis
bacteria
Skin
biology
integumentary system
Chemistry
Staphylococcal Infections
Antimicrobial
Anti-Bacterial Agents
Staphylococcus aureus (S. aureus)
host defense
Staphylococcus aureus
Intercellular Signaling Peptides and Proteins
Female
Chemokines
Oligopeptides
Oxidation-Reduction
chemerin
Methicillin-Resistant Staphylococcus aureus
skin
Immunology
Microbial Sensitivity Tests
Microbiology
03 medical and health sciences
epidermis
medicine
Chemerin
Animals
Humans
Molecular Biology
030102 biochemistry & molecular biology
adipokine
Chemotaxis
Cell Biology
Skin Diseases
Bacterial

medicine.disease
Mice
Inbred C57BL

Oxidative Stress
030104 developmental biology
Coenzyme Q – cytochrome c reductase
biology.protein
Popis: Chemerin is a leukocyte attractant, adipokine, and antimicrobial protein abundantly produced in the skin epidermis. Despite the fact that most of the bactericidal activity present in human skin exudates is chemerin-dependent, just how chemerin shapes skin defenses remains obscure. Here we demonstrate that p4, a potent antimicrobial human chemerin peptide derivative, displays killing activity against pathogenic methicillin-resistant Staphylococcus aureus strains and suppresses microbial growth in a topical skin infection model. Mechanistically, we show that p4 homodimerization is required for maximal bactericidal activity and that an oxidative environment, such as at the skin surface, facilitates p4 disulfide bridge formation, required for the dimerization. p4 led to rapid damage of the bacterial internal membrane and inhibited the interaction between the membranous cytochrome bc(1) complex and its redox partner, cytochrome c. These results suggest that a chemerin p4–based defense strategy combats bacterial challenges at the skin surface.
Databáze: OpenAIRE