On uniformity conjectures for abelian varieties and K3 surfaces

Autor: Martin Orr, Alexei N. Skorobogatov, Yuri G. Zarhin
Přispěvatelé: Engineering & Physical Science Research Council (EPSRC)
Rok vydání: 2021
Předmět:
Zdroj: American Journal of Mathematics
Orr, M, Skorobogatov, A N & Zarhin, Y G 2021, ' On uniformity conjectures for abelian varieties and K3 surfaces ', American Journal of Mathematics, vol. 143, no. 6, pp. 1665-1702 . https://doi.org/10.1353/ajm.2021.0043
ISSN: 1080-6377
0002-9327
DOI: 10.1353/ajm.2021.0043
Popis: We discuss logical links among uniformity conjectures concerning K3 surfaces and abelian varieties of bounded dimension defined over number fields of bounded degree. The conjectures concern the endomorphism algebra of an abelian variety, the Neron-Severi lattice of a K3 surface, and the Galois invariant subgroup of the geometric Brauer group.
Comment: 38 pages. Minor fixes
Databáze: OpenAIRE