On uniformity conjectures for abelian varieties and K3 surfaces
Autor: | Martin Orr, Alexei N. Skorobogatov, Yuri G. Zarhin |
---|---|
Přispěvatelé: | Engineering & Physical Science Research Council (EPSRC) |
Rok vydání: | 2021 |
Předmět: |
Science & Technology
Mathematics - Number Theory SHAFAREVICH LEVEL STRUCTURES General Mathematics Mathematics::Rings and Algebras FINITENESS THEOREM OPEN IMAGE THEOREM 0101 Pure Mathematics MUMFORD-TATE Mathematics - Algebraic Geometry Mathematics::Algebraic Geometry Physical Sciences NUMBER-FIELDS FOS: Mathematics Number Theory (math.NT) QA ENDOMORPHISM ALGEBRAS Algebraic Geometry (math.AG) Mathematics L-ADIC REPRESENTATIONS |
Zdroj: | American Journal of Mathematics Orr, M, Skorobogatov, A N & Zarhin, Y G 2021, ' On uniformity conjectures for abelian varieties and K3 surfaces ', American Journal of Mathematics, vol. 143, no. 6, pp. 1665-1702 . https://doi.org/10.1353/ajm.2021.0043 |
ISSN: | 1080-6377 0002-9327 |
DOI: | 10.1353/ajm.2021.0043 |
Popis: | We discuss logical links among uniformity conjectures concerning K3 surfaces and abelian varieties of bounded dimension defined over number fields of bounded degree. The conjectures concern the endomorphism algebra of an abelian variety, the Neron-Severi lattice of a K3 surface, and the Galois invariant subgroup of the geometric Brauer group. Comment: 38 pages. Minor fixes |
Databáze: | OpenAIRE |
Externí odkaz: |