Characteristic classes of Borel orbits of square-zero upper-triangular matrices

Autor: Piotr Rudnicki, Andrzej Weber
Rok vydání: 2021
Předmět:
DOI: 10.48550/arxiv.2108.03598
Popis: Anna Melnikov provided a parametrization of Borel orbits in the affine variety of square-zero $n \times n$ matrices by the set of involutions in the symmetric group. A related combinatorics leads to a construction a Bott-Samelson type resolution of the orbit closures. This allows to compute cohomological and K-theoretic invariants of the orbits: fundamental classes, Chern-Schwartz-MacPherson classes and motivic Chern classes in torus-equivariant theories. The formulas are given in terms of Demazure-Lusztig operations. The case of square-zero upper-triangular matrices is reach enough to include information about cohomological and K-theoretic classes of the double Borel orbits in $Hom(\mathbb C^k,\mathbb C^m)$ for $k+m=n$. We recall the relation with double Schubert polynomials and show analogous interpretation of Rim\'anyi-Tarasov-Varchenko trigonometric weight function.
Comment: 29 pages
Databáze: OpenAIRE