A criterion for metanilpotency of a finite group
Autor: | Raimundo Bastos, Carmine Monetta, Pavel Shumyatsky |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Pure mathematics
Finite group Algebra and Number Theory Coprime integers 010102 general mathematics Group Theory (math.GR) Central series 01 natural sciences Term (time) Nilpotent Mathematics::Group Theory If and only if 0103 physical sciences FOS: Mathematics 010307 mathematical physics 0101 mathematics 20D30 20D25 Mathematics - Group Theory Mathematics |
Popis: | We prove that the kth term of the lower central series of a finite group G is nilpotent if and only if | a b | = | a | | b | {|ab|=|a||b|} for any γ k {\gamma_{k}} -commutators a , b ∈ G {a,b\in G} of coprime orders. |
Databáze: | OpenAIRE |
Externí odkaz: |