The complex multinormal distribution, quadratic forms in complex random vectors and an omnibus goodness-of-fit test for the complex normal distribution
Autor: | Pierre Lafaye de Micheaux, Bastien Marchina, Gilles R. Ducharme |
---|---|
Přispěvatelé: | Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Département de Mathématiques et de Statistiques [UdeM- Montréal], Université de Montréal (UdeM), Méthodologie Statistique et Sciences Sociales (MS3), Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]) |
Rok vydání: | 2014 |
Předmět: |
Statistics and Probability
Distribution (number theory) Characteristic function (probability theory) Monte Carlo method Asymptotic distribution 020206 networking & telecommunications 02 engineering and technology 01 natural sciences Complex normal distribution Combinatorics 010104 statistics & probability Goodness of fit [MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] 0202 electrical engineering electronic engineering information engineering Applied mathematics 0101 mathematics Linear combination Independence (probability theory) Mathematics |
Zdroj: | Annals of the Institute of Statistical Mathematics Annals of the Institute of Statistical Mathematics, Springer Verlag, 2016, 68 (1), pp.77-104. ⟨10.1007/s10463-014-0486-5⟩ Annals of the Institute of Statistical Mathematics, 2016, 68 (1), pp.77-104. ⟨10.1007/s10463-014-0486-5⟩ |
ISSN: | 1572-9052 0020-3157 |
DOI: | 10.1007/s10463-014-0486-5 |
Popis: | International audience; This paper first reviews some basic properties of the (noncircular) complex multinormal distribution and presents a few characterizations of it. The distribution of linear combinations of complex normally distributed random vectors is then obtained, as well as the behavior of quadratic forms in complex multinormal random vectors. We look into the problem of estimating the complex parameters of the complex normal distribution and give their asymptotic distribution. We then propose a virtually omnibus goodness-of-fit test for the complex normal distribution with unknown parameters, based on the empirical characteristic function. Monte Carlo simulation results show that our test behaves well against various alternative distributions. The test is then applied to an fMRI data set and we show how it can be used to “validate” the usual hypothesis of normality of the outside-brain signal. An R package that contains the functions to perform the test is available from the authors. |
Databáze: | OpenAIRE |
Externí odkaz: |