Consolidated picture of tunnelling spintronics across oxygen vacancy states in MgO

Autor: Beata Taudul, Jacek Arabski, Eric Beaurepaire, F. Schleicher, Samy Boukari, Martin Bowen, Michel Hehn, Mebarek Alouani, Elmer Monteblanco, François Montaigne, K. Katcko, Ufuk Halisdemir, L. M. Kandpal, Daniel Lacour, E. Urbain, Wolfgang Weber
Přispěvatelé: Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Institut Jean Lamour (IJL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), IMPACT N4S, ANR-15-IDEX-0004,LUE,Isite LUE(2015)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Journal of Physics D: Applied Physics
Journal of Physics D: Applied Physics, IOP Publishing, 2019, 52 (30), pp.305302. ⟨10.1088/1361-6463/ab1f4d⟩
ISSN: 0022-3727
1361-6463
DOI: 10.1088/1361-6463/ab1f4d⟩
Popis: The field of tunnelling spintronics has flourished through the study of magnetic tunnel junctions (MTJs) with MgO barriers. The combination of high spintronic performance and low effective barrier heights has enabled new technologies, ranging from next-generation memories to bio-inspired computing. This combination is made possible by structural defects such as oxygen vacancies. So far, experiments have pegged an energy separation between these localized states and the Fermi level, while theory has predicted that these are in fact occupied states. To rationalize the defect-mediated potential tunnelling landscape, we have performed experiments in which we tune the MTJ's Fermi level by altering one electrode's work function. We find that switching the top electrode from FeCoB to FeB increases the amplitude of defect-mediated barrier heights. Ab initio theory attributes this increase to an increased energy separation between the localized states of single and double oxygen vacancies and the Fermi level. We thus extract a rationalized potential landscape of tunnelling across oxygen vacancies in MgO involving occupied states. In junctions with high R.A. product such as ours, this leads to a picture of hole tunnelling.
Databáze: OpenAIRE