Accessible points of planar embeddings of tent inverse limit spaces
Autor: | Ana Anušić, Jernej Činč |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Pure mathematics
Class (set theory) General Mathematics 010102 general mathematics General Topology (math.GN) Dynamical Systems (math.DS) 01 natural sciences Prime (order theory) 010101 applied mathematics Planar Attractor FOS: Mathematics Inverse limit 0101 mathematics Mathematics - Dynamical Systems 37B10 37B45 37E05 54H20 Mathematics Mathematics - General Topology |
Popis: | In this paper we study a class of embeddings of tent inverse limit spaces. We introduce techniques relying on the Milnor-Thurston kneading theory and use them to study sets of accessible points and prime ends of given embeddings. We completely characterize accessible points and prime ends of standard embeddings arising from the Barge-Martin construction of global attractors. In other (non-extendable) embeddings we find phenomena which do not occur in the standard embeddings. extended preliminaries on construction of planar embeddings; 58 pages, 23 figures |
Databáze: | OpenAIRE |
Externí odkaz: |