A global variational filter for restoring noised images with gamma multiplicative noise
Autor: | N. Diffellah, Abdelmalik Taleb-Ahmed, F. Derraz, Zine-Eddine Baarir |
---|---|
Přispěvatelé: | University of Mohamed Khider [Biskra], Université Aboubekr Belkaid - University of Belkaïd Abou Bekr [Tlemcen], Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), COMmunications NUMériques - IEMN (COMNUM - IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - Département Opto-Acousto-Électronique - UMR 8520 (IEMN-DOAE), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France), IEMN, Collection, University of Biskra Mohamed Khider, Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
multiplicative gamma noise
restoration Computer science Image quality [SPI] Engineering Sciences [physics] Probability density function 010103 numerical & computational mathematics 02 engineering and technology 01 natural sciences Regularization (mathematics) Multiplicative noise [SPI]Engineering Sciences [physics] lcsh:Technology (General) 0202 electrical engineering electronic engineering information engineering MAP estimation 0101 mathematics lcsh:T58.5-58.64 lcsh:Information technology Multiplicative function PSNR data fitting proximal operator Real image VSNR regularization Variational method total variation lcsh:TA1-2040 SSIM Curve fitting lcsh:T1-995 020201 artificial intelligence & image processing lcsh:Engineering (General). Civil engineering (General) Algorithm |
Zdroj: | ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, EOS ASSOC, 2019, 9 (3), pp.4188-4195 Engineering, Technology & Applied Science Research, Vol 9, Iss 3 (2019) ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2019, 9 (3), pp.4188-4195 |
ISSN: | 2241-4487 |
Popis: | In this paper, we focus on a globally variational method to restore noisy images corrupted by multiplicative gamma noise. Our problem is assumed as a regularization problem in total variation (TV) framework with data fitting term which is deduced by maximizing the a-posteriori probability density (MAP estimation). We need to evaluate the proximal operator of a data fitting term then we numerically adapt the Douglas-Rachford (DR) splitting method to solve the problem. Our experiments use real images with different levels of noise. To validate the effectiveness of the proposed method, we compare the proposed method with other variational models. Our method shows effective suppression of noise, excellent edge preservation, and the measures of image quality such as PSNR (peak signal-to-noise ratio), VSNR (visual signal-to-noise ratio) and SSIM (structural similarity index) explain the proposed model΄s good performance. |
Databáze: | OpenAIRE |
Externí odkaz: |