A global variational filter for restoring noised images with gamma multiplicative noise

Autor: N. Diffellah, Abdelmalik Taleb-Ahmed, F. Derraz, Zine-Eddine Baarir
Přispěvatelé: University of Mohamed Khider [Biskra], Université Aboubekr Belkaid - University of Belkaïd Abou Bekr [Tlemcen], Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), COMmunications NUMériques - IEMN (COMNUM - IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - Département Opto-Acousto-Électronique - UMR 8520 (IEMN-DOAE), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France), IEMN, Collection, University of Biskra Mohamed Khider, Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH
ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, EOS ASSOC, 2019, 9 (3), pp.4188-4195
Engineering, Technology & Applied Science Research, Vol 9, Iss 3 (2019)
ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2019, 9 (3), pp.4188-4195
ISSN: 2241-4487
Popis: In this paper, we focus on a globally variational method to restore noisy images corrupted by multiplicative gamma noise. Our problem is assumed as a regularization problem in total variation (TV) framework with data fitting term which is deduced by maximizing the a-posteriori probability density (MAP estimation). We need to evaluate the proximal operator of a data fitting term then we numerically adapt the Douglas-Rachford (DR) splitting method to solve the problem. Our experiments use real images with different levels of noise. To validate the effectiveness of the proposed method, we compare the proposed method with other variational models. Our method shows effective suppression of noise, excellent edge preservation, and the measures of image quality such as PSNR (peak signal-to-noise ratio), VSNR (visual signal-to-noise ratio) and SSIM (structural similarity index) explain the proposed model΄s good performance.
Databáze: OpenAIRE