Gastric epithelial expression of macrophage migration inhibitory factor is not altered by Helicobacter pylori infection in humans
Autor: | Pia Lebiedz, Christian Maaser, Susanne Riedel, Torsten Kucharzik, Jan Heidemann, Andreas Lügering, Hermann Herbst, Wolfram Domschke |
---|---|
Rok vydání: | 2006 |
Předmět: |
animal diseases
Biopsy chemical and pharmacologic phenomena Enzyme-Linked Immunosorbent Assay Epithelium Proinflammatory cytokine Cell Line Helicobacter Infections Downregulation and upregulation otorhinolaryngologic diseases medicine CagA Humans Secretion Helicobacter RNA Messenger Macrophage Migration-Inhibitory Factors biology Helicobacter pylori Reverse Transcriptase Polymerase Chain Reaction Interleukin-8 Gastroenterology General Medicine respiratory system biology.organism_classification Molecular biology biological factors Infectious Diseases medicine.anatomical_structure Gene Expression Regulation Cell culture Gastric Mucosa Immunology Macrophage migration inhibitory factor |
Zdroj: | Helicobacter. 11(4) |
ISSN: | 1083-4389 |
Popis: | Background: Recent reports have shown an upregulation of macrophage migration inhibitory factor (MIF) during gastric ulcer development in a rat model and elevated counts of MIF-positive cells in biopsies from Helicobacter pylori-infected patients. H. pylori infection is a proven cofactor in humans causing gastritis and gastric ulcers. The aim of this study was to characterize MIF expression in human gastric epithelial cells in response to H. pylori. Methods: MIF mRNA and MIF protein expression was detected in human gastric epithelial cell lines after stimulation with proinflammatory cytokines or infection with H. pylori (cagA+/vacA+) using real-time reverse transcriptase–polymerase and enzyme-linked immunosorbent assay. Interleukin-8 secretion was measured as positive control. MIF mRNA and MIF protein expression was assessed in H. pylori-positive and -negative human gastric biopsy samples. Results: While interleukin-8 mRNA expression and interleukin-8 secretion were upregulated in gastric epithelial cells in vitro after H. pylori infection, no changes in MIF mRNA expression and MIF secretion could be detected. We found no significant differences in MIF expression in total RNA extracted from gastric biopsy tissue when comparing H. pylori-positive to control patients. Likewise, MIF protein expression in gastric epithelium was unaffected by H. pylori infection as compared to uninfected tissue. Conclusions: While an increased MIF expression and positive effects of MIF blockade in ulcer healing have been shown in a rodent model and elevated numbers of MIF-positive cells have been found in H. pylori-infected human tissue, we herein could not confirm any differences in human gastric epithelial MIF expression and secretion after H. pylori infection in vitro and in vivo. |
Databáze: | OpenAIRE |
Externí odkaz: |