A Yeast-Based Biosensor for Screening of Short- and Medium-Chain Fatty Acid Production
Autor: | Eckhard Boles, Leonie Baumann, Mislav Oreb, John P. Morrissey, Arun S. Rajkumar |
---|---|
Rok vydání: | 2018 |
Předmět: |
0106 biological sciences
0301 basic medicine Chromatography Gas Saccharomyces cerevisiae Proteins High-throughput screening Saccharomyces cerevisiae Biomedical Engineering Biosensing Techniques 01 natural sciences Biochemistry Genetics and Molecular Biology (miscellaneous) Green fluorescent protein Short-chain fatty acids 03 medical and health sciences 010608 biotechnology Octanoic acid Medium chain fatty acid Promoter Regions Genetic Reporter gene Chromatography PDR12 biology Chemistry Fatty Acids technology industry and agriculture Medium-chain fatty acids General Medicine biology.organism_classification Yeast 030104 developmental biology Linear range ATP-Binding Cassette Transporters Biosensor |
Zdroj: | ACS Synthetic Biology |
ISSN: | 2161-5063 |
DOI: | 10.1021/acssynbio.8b00309 |
Popis: | Short- and medium-chain fatty acids (SMCFA) are important platform chemicals currently produced from nonsustainable resources. The engineering of microbial cells to produce SMCFA, however, lacks high-throughput methods to screen for best performing cells. Here, we present the development of a whole-cell biosensor for easy and rapid detection of SMCFA. The biosensor is based on a multicopy yeast plasmid containing the SMCFA-responsive PDR12 promoter coupled to GFP as the reporter gene. The sensor detected hexanoic, heptanoic and octanoic acid over a linear range up to 2, 1.5, and 0.75 mM, respectively, but did not show a linear response to decanoic and dodecanoic acid. We validated the functionality of the biosensor with culture supernatants of a previously engineered Saccharomyces cerevisiae octanoic acid producer strain and derivatives thereof. The biosensor signal correlated strongly with the octanoic acid concentrations as determined by gas chromatography. Thus, this biosensor enables the high throughput screening of SMCFA producers and has the potential to drastically speed up the engineering of diverse SMCFA producing cell factories. |
Databáze: | OpenAIRE |
Externí odkaz: |