Nonlinear energy stability of magnetohydrodynamics Couette and Hartmann shear flows: A contradiction and a conjecture

Autor: Giuseppe Mulone, Paolo Falsaperla, Carla Perrone
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Popis: Here we study the nonlinear stability of magnetohydrodynamics plane Couette and Hartmann shear flows. We prove that the streamwise perturbations are stable for any Reynolds number. This result is in a contradiction with the numerical solutions of the Euler–Lagrange equations for a maximum energy problem. We solve this contradiction with a conjecture. Then, we rigorous prove that the least stabilizing perturbations, in the energy norm, are the spanwise perturbations and give some critical Reynolds numbers for some selected Prandtl and Hartmann numbers. Similar results have been obtained by Falsaperla et al. (2021) for the classical plane Couette and Poiseuille fluid-dynamics flows.
Databáze: OpenAIRE