Publisher Correction: Marked bias towards spontaneous synaptic inhibition distinguishes non-adapting from adapting layer 5 pyramidal neurons in the barrel cortex
Autor: | Kathy Q. Le, Rebecca L. Voglewede, Ion R. Popescu, Ricardo Mostany, Rocío Palenzuela |
---|---|
Rok vydání: | 2018 |
Předmět: |
Cerebral Cortex
Male Multidisciplinary Chemistry Pyramidal Cells lcsh:R Presynaptic inhibition lcsh:Medicine Excitatory Postsynaptic Potentials food and beverages Mice Transgenic Barrel cortex Publisher Correction Synaptic Transmission Article Inhibitory Postsynaptic Potentials nervous system Animals lcsh:Q Female lcsh:Science Neuroscience Layer (electronics) |
Zdroj: | Scientific Reports Scientific Reports, Vol 8, Iss 1, Pp 1-3 (2018) |
ISSN: | 2045-2322 |
Popis: | Pyramidal neuron subtypes differ in intrinsic electrophysiology properties and dendritic morphology. However, do different pyramidal neuron subtypes also receive synaptic inputs that are dissimilar in frequency and in excitation/inhibition balance? Unsupervised clustering of three intrinsic parameters that vary by cell subtype - the slow afterhyperpolarization, the sag, and the spike frequency adaptation - split layer 5 barrel cortex pyramidal neurons into two clusters: one of adapting cells and one of non-adapting cells, corresponding to previously described thin- and thick-tufted pyramidal neurons, respectively. Non-adapting neurons presented frequencies of spontaneous inhibitory postsynaptic currents (sIPSCs) and spontaneous excitatory postsynaptic currents (sEPSCs) three- and two-fold higher, respectively, than those of adapting neurons. The IPSC difference between pyramidal subtypes was activity independent. A subset of neurons were thy1-GFP positive, presented characteristics of non-adapting pyramidal neurons, and also had higher IPSC and EPSC frequencies than adapting neurons. The sEPSC/sIPSC frequency ratio was higher in adapting than in non-adapting cells, suggesting a higher excitatory drive in adapting neurons. Therefore, our study on spontaneous synaptic inputs suggests a different extent of synaptic information processing in adapting and non-adapting barrel cortex neurons, and that eventual deficits in inhibition may have differential effects on the excitation/inhibition balance in adapting and non-adapting neurons. |
Databáze: | OpenAIRE |
Externí odkaz: |