Determination of genus of normal subgroups of discrete groups
Autor: | Ismail Naci Cangül, Musa Demirci, Aysun Yurttas, Eylem G. Karpuz, Firat Ates, Theodore E. Simos, George Psihoyios, Ch. Tsitouras |
---|---|
Přispěvatelé: | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü., Cangül, İsmail Naci, Demirci, Musa, Yurttaş, Aysun, AAG-8470-2021, J-3505-2017 |
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: |
Normal subgroup
Fuchsian group Hecke Groups Modular Forms Graph Signature Combinatorics Mathematics::Group Theory Engineering Modular group Locally finite group Genus (mathematics) Permutation method Hecke groups Mathematics applied Mathematics Discrete mathematics Physics applied Physics mathematical Physics Cycle graph (algebra) Sporadic group Engineering multidisciplinary Physics multidisciplinary Riemann surface Signature (topology) |
Popis: | Bu çalışma, 19-25 Eylül 2010 tarihleri arasında Rhodes[Yunanistan]’da düzenlenen International Conference on Numerical Analysis and Applied Mathematics’da bildiri olarak sunulmuştur. In this work, subgroups of a special class of discrete subgroups of PLS(2, R), namely the ones of the first kind with genus 0, have been studied. We establish a technique to compute the genus of these subgroups in terms of the genus of easier groups. The method established here can be used for triangle groups, surface groups and Hecke groups (including the well-known modular group). European Soc Comp Methods Sci & Engn |
Databáze: | OpenAIRE |
Externí odkaz: |