Propionic acid metabolism and poly-3-hydroxybutyrate-co-3-hydroxyvalerate production by a prpC mutant of Herbaspirillum seropedicae Z69
Autor: | Paul R. Gill, Fernando Ferreira, Ana Karen Malan, Silvia Cristina Freitas Batista, Ana Inés Catalán |
---|---|
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
Herbaspirillum Polyesters 030106 microbiology Mutant Bioengineering Herbaspirillum seropedicae Applied Microbiology and Biotechnology Polyhydroxyalkanoates Polyhydroxybutyrate Gene Knockout Techniques 03 medical and health sciences chemistry.chemical_compound Bacterial Proteins Citrates biology Chemistry Catabolism Oxo-Acid-Lyases General Medicine Metabolism biology.organism_classification Biosynthetic Pathways Glucose 030104 developmental biology Biochemistry Sodium propionate Mutation Propionates Bacteria Biotechnology |
Zdroj: | Journal of Biotechnology. 286:36-44 |
ISSN: | 0168-1656 |
DOI: | 10.1016/j.jbiotec.2018.09.008 |
Popis: | Polyhydroxyalkanoates (PHAs) are thermoplastic polyesters produced by a wide range of bacteria as carbon and energy reserves. PHA accumulation is typically increased under unbalanced growth conditions and with carbon source in excess. Although polyhydroxybutyrate (PHB) could be used for specific applications, it is brittle and not a useful alternative for plastics like polypropylene. Far more useful polypropylene-like PHAs, are copolymers composed of 3-hydroxybutyrate and 3-hydroxyvalerate, P(3HB-co-3HV). Propionic acid is one of the carbon sources that can be used to generate 3HV. A mutant derived from Herbaspirillum seropedicae Z69, a strain previously described as capable of producing P(3HB-co-3HV) from propionic acid, was constructed to increase 3HV biosynthetic efficiency. The strategy involved elimination of a catabolic route for propionyl-CoA by deficiency marker exchange of a selected gene. The mutant (Z69Prp) was constructed by elimination of the 2-methylcitrate synthase (PrpC) gene of the 2-methylcitrate cycle for propionate catabolism. Strain Z69Prp was unable to grow on sodium propionate, but in cultures with glucose-propionate accumulated 50% of its dry weight as copolymer. Z69Prp had 14.1 mol% 3HV; greater than that of strain Z69 (2.89 mol%). The 3HV yield from propionic acid (Y3HV/prop) was 0.80 g g−1, and below the maximum theoretical value (1.35 g g−1). |
Databáze: | OpenAIRE |
Externí odkaz: |