Effect of Nanoparticles on the Bulk Shear Viscosity of a Lung Surfactant Fluid
Autor: | Jean-François Berret, L.P.A. Thai, Evdokia K. Oikonomou, F. Mousseau, Milad Radiom |
---|---|
Přispěvatelé: | Programme ERC Lascaux, Institut de recherche en droit privé (IRDP), Université de Nantes - UFR Droit et Sciences Politiques (UFR DSP), Université de Nantes (UN)-Université de Nantes (UN)-Université de Nantes - UFR Droit et Sciences Politiques (UFR DSP), Université de Nantes (UN)-Université de Nantes (UN), CNRS UMR 7057 - Laboratoire Matières et Systèmes Complexes (MSC) (MSC), Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Microrheology
Time Factors Surface Properties General Physics and Astronomy Nanoparticle FOS: Physical sciences Context (language use) 02 engineering and technology Condensed Matter - Soft Condensed Matter 010402 general chemistry 01 natural sciences Viscoelasticity Viscosity Colloid Pulmonary surfactant Aluminum Oxide Humans General Materials Science Physics - Biological Physics Particle Size General Engineering Pulmonary Surfactants Silicon Dioxide 021001 nanoscience & nanotechnology 0104 chemical sciences Magnetic Fields Chemical engineering Biological Physics (physics.bio-ph) Nanoparticles Particle Soft Condensed Matter (cond-mat.soft) 0210 nano-technology Bronchoalveolar Lavage Fluid [PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] |
Zdroj: | ACS Nano ACS Nano, American Chemical Society, 2020, 14 (1), pp.466-475. ⟨10.1021/acsnano.9b06293⟩ |
ISSN: | 1936-0851 |
DOI: | 10.1021/acsnano.9b06293⟩ |
Popis: | Inhaled nanoparticles (< 100 nm) reaching the deep lung region first interact with the pulmonary surfactant, a thin lipid film lining the alveolar epithelium. To date, most biophysical studies have focused on particle induced modifications of the film interfacial properties. In comparison, there is less work on the surfactant bulk properties, and on their changes upon particle exposure. Here we study the viscoelastic properties of a biomimetic pulmonary surfactant in the presence of various engineered nanoparticles. The microrheology technique used is based on the remote actuation of micron-sized wires via the application of a rotating magnetic field and on time-lapse optical micros-copy. It is found that particles strongly interacting with lipid vesicles, such as cationic silica (SiO2, 42 nm) and alumina (Al2O3, 40 nm) induce profound modifications of the surfactant flow proper-ties, even at low concentrations. In particular, we find that silica causes fluidification, while alumi-na induces a liquid-to-soft solid transition. Both phenomena are described quantitatively and ac-counted for in the context of colloidal physics models. It is finally suggested that the structure and viscosity changes could impair the fluid reorganization and recirculation occurring during breath-ing. 19 pages 6 figures, accepted at ACS Nano 11 December 2019 |
Databáze: | OpenAIRE |
Externí odkaz: |