Scale-invariant estimates and vorticity alignment for Navier-Stokes in the half-space with no-slip boundary conditions
Autor: | Christophe Prange, Tobias Barker |
---|---|
Přispěvatelé: | Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Physics
Pure mathematics Mechanical Engineering 010102 general mathematics Ode Slip (materials science) Vorticity Half-space Scale invariance 35A99 35B44 35B65 35D30 35Q30 76D05 01 natural sciences 010101 applied mathematics Uniform continuity Mathematics - Analysis of PDEs Mathematics (miscellaneous) Compact space FOS: Mathematics [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Boundary value problem 0101 mathematics Analysis Analysis of PDEs (math.AP) |
Zdroj: | Barker, T & Prange, C 2019, ' Scale-invariant estimates and vorticity alignment for Navier-Stokes in the half-space with no-slip boundary conditions ', Archive for Rational Mechanics and Analysis, vol. 235, pp. 881–926 . https://doi.org/10.1007/s00205-019-01435-z Archive for Rational Mechanics and Analysis Archive for Rational Mechanics and Analysis, Springer Verlag, 2019, ⟨10.1007/s00205-019-01435-z⟩ |
ISSN: | 0003-9527 1432-0673 |
DOI: | 10.1007/s00205-019-01435-z |
Popis: | This paper is concerned with geometric regularity criteria for the Navier-Stokes equations in $\mathbb{R}^3_{+}\times (0,T)$ with no-slip boundary condition, with the assumption that the solution satisfies the `ODE blow-up rate' Type I condition. More precisely, we prove that if the vorticity direction is uniformly continuous on subsets of $$\bigcup_{t\in(T-1,T)} \big(B(0,R)\cap\mathbb{R}^3_{+}\big)\times {\{t\}},\,\,\,\,\,\, R=O(\sqrt{T-t})$$ where the vorticity has large magnitude, then $(0,T)$ is a regular point. This result is inspired by and improves the regularity criteria given by Giga, Hsu and Maekawa (2014). We also obtain new local versions for suitable weak solutions near the flat boundary. Our method hinges on new scaled Morrey estimates, blow-up and compactness arguments and `persistence of singularites' on the flat boundary. The scaled Morrey estimates seem to be of independent interest. Comment: 38 pages, 1 figure |
Databáze: | OpenAIRE |
Externí odkaz: |