Discriminating single-bacterial shape using low-aspect-ratio pores
Autor: | Wataru Tonomura, Kazumichi Yokota, Takashi Washio, Noritada Kaji, Makusu Tsutsui, Akihide Arima, Masateru Taniguchi, Takao Yasui, Takeshi Yanagida, Kazuki Nagashima, Yoshinobu Baba, Hirotoshi Yasaki, Tomoji Kawai, Takeshi Yoshida |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Materials science
Ionic bonding lcsh:Medicine 02 engineering and technology 010402 general chemistry Proof of Concept Study 01 natural sciences Article Machine Learning Nanopores Nanotechnology Waveform lcsh:Science Nanoscopic scale Ions Resistive touchscreen Multidisciplinary Bacteria Pulse (signal processing) lcsh:R Electrochemical Techniques 021001 nanoscience & nanotechnology Aspect ratio (image) 0104 chemical sciences Nanopore Feasibility Studies lcsh:Q Current (fluid) 0210 nano-technology Biological system |
Zdroj: | Scientific Reports, Vol 7, Iss 1, Pp 1-9 (2017) Scientific Reports |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-017-17443-6 |
Popis: | Conventional concepts of resistive pulse analysis is to discriminate particles in liquid by the difference in their size through comparing the amount of ionic current blockage. In sharp contrast, we herein report a proof-of-concept demonstration of the shape sensing capability of solid-state pore sensors by leveraging the synergy between nanopore technology and machine learning. We found ionic current spikes of similar patterns for two bacteria reflecting the closely resembled morphology and size in an ultra-low thickness-to-diameter aspect-ratio pore. We examined the feasibility of a machine learning strategy to pattern-analyse the sub-nanoampere corrugations in each ionic current waveform and identify characteristic electrical signatures signifying nanoscopic differences in the microbial shape, thereby demonstrating discrimination of single-bacterial cells with accuracy up to 90%. This data-analytics-driven microporescopy capability opens new applications of resistive pulse analyses for screening viruses and bacteria by their unique morphologies at a single-particle level. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |