Temperature‐sensitive biochemical 18 O‐fractionation and humidity‐dependent attenuation factor are needed to predict δ 18 O of cellulose from leaf water in a grassland ecosystem
Autor: | Jianjun Zhu, Juan C. Baca Cabrera, Inga Schleip, Lisa Wingate, Ulrike Ostler, Jérôme Ogée, Hans Schnyder, Rudi Schäufele, Regina T. Hirl |
---|---|
Přispěvatelé: | Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), Interactions Sol Plante Atmosphère (UMR ISPA), Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Karlsruher Institut für Technologie (KIT) |
Rok vydání: | 2019 |
Předmět: |
0106 biological sciences
0301 basic medicine Materials science Physiology isotope‐enabled soil–vegetation–atmosphere transfer model (MuSICA) perennial ryegrass (Lolium perenne) Analytical chemistry enrichment of cellulose oxygen isotope composition of cellulose Plant Science Leaf water Fractionation relative humidity 01 natural sciences 03 medical and health sciences chemistry.chemical_compound vegetation– enabled soil– isotope‐ Attenuation factor ddc:550 Relative humidity Cellulose relative humidity temperature 2. Zero hunger Humidity food and beverages temperature 18O‐enrichment of cellulose oxygen isotope composition of cellulose 15. Life on land Canopy conductance O-18‐ atmosphere transfer model (MuSICA) ddc Earth sciences 030104 developmental biology chemistry [SDE]Environmental Sciences Temperature sensitive canopy conductance grassland 010606 plant biology & botany |
Zdroj: | New Phytologist New Phytologist, Wiley, 2021, pp.1-16. ⟨10.1111/nph.17111⟩ The new phytologist, 229 (6), 3156-3171 |
ISSN: | 0028-646X 1469-8137 3156-3171 |
Popis: | We explore here our mechanistic understanding of the environmental and physiological processes that determine the oxygen isotope composition of leaf cellulose (δ$^{18}$O$_{cellulose}$) in a drought‐prone, temperate grassland ecosystem. A new allocation‐and‐growth model was designed and added to an $^{18}$O‐enabled soil–vegetation–atmosphere transfer model (MuSICA) to predict seasonal (April–October) and multi‐annual (2007–2012) variation of δ$^{18}$O$_{cellulose}$ and $^{18}$O‐enrichment of leaf cellulose (Δ$^{18}$O$_{cellulose}$) based on the Barbour–Farquhar model. Modelled δ$^{18}$O$_{cellulose}$ agreed best with observations when integrated over c. 400 growing‐degree‐days, similar to the average leaf lifespan observed at the site. Over the integration time, air temperature ranged from 7 to 22°C and midday relative humidity from 47 to 73%. Model agreement with observations of δ$^{18}$O$_{cellulose}$ (R$^{2}$ = 0.57) and Δ$^{18}$O$_{cellulose}$ (R$^{2}$ = 0.74), and their negative relationship with canopy conductance, was improved significantly when both the biochemical $^{18}$O‐fractionation between water and substrate for cellulose synthesis (ε$_{bio}$, range 26–30‰) was temperature‐sensitive, as previously reported for aquatic plants and heterotrophically grown wheat seedlings, and the proportion of oxygen in cellulose reflecting leaf water $^{18}$O‐enrichment (1 – p$_{ex}$p$_{x}$, range 0.23–0.63) was dependent on air relative humidity, as observed in independent controlled experiments with grasses. Understanding physiological information in δ$^{18}$O$_{cellulose}$ requires quantitative knowledge of climatic effects on p$_{ex}$p$_{x}$ and ε$_{bio}$. |
Databáze: | OpenAIRE |
Externí odkaz: |