Temperature‐sensitive biochemical 18 O‐fractionation and humidity‐dependent attenuation factor are needed to predict δ 18 O of cellulose from leaf water in a grassland ecosystem

Autor: Jianjun Zhu, Juan C. Baca Cabrera, Inga Schleip, Lisa Wingate, Ulrike Ostler, Jérôme Ogée, Hans Schnyder, Rudi Schäufele, Regina T. Hirl
Přispěvatelé: Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), Interactions Sol Plante Atmosphère (UMR ISPA), Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Karlsruher Institut für Technologie (KIT)
Rok vydání: 2019
Předmět:
0106 biological sciences
0301 basic medicine
Materials science
Physiology
isotope‐enabled soil–vegetation–atmosphere transfer model (MuSICA)
perennial ryegrass (Lolium perenne)
Analytical chemistry
enrichment of cellulose oxygen isotope composition of cellulose
Plant Science
Leaf water
Fractionation
relative humidity
01 natural sciences
03 medical and health sciences
chemistry.chemical_compound
vegetation–
enabled soil–
isotope‐
Attenuation factor
ddc:550
Relative humidity
Cellulose
relative humidity temperature
2. Zero hunger
Humidity
food and beverages
temperature
18O‐enrichment of cellulose oxygen isotope composition of cellulose
15. Life on land
Canopy conductance
O-18‐
atmosphere transfer model (MuSICA)
ddc
Earth sciences
030104 developmental biology
chemistry
[SDE]Environmental Sciences
Temperature sensitive
canopy conductance
grassland
010606 plant biology & botany
Zdroj: New Phytologist
New Phytologist, Wiley, 2021, pp.1-16. ⟨10.1111/nph.17111⟩
The new phytologist, 229 (6), 3156-3171
ISSN: 0028-646X
1469-8137
3156-3171
Popis: We explore here our mechanistic understanding of the environmental and physiological processes that determine the oxygen isotope composition of leaf cellulose (δ$^{18}$O$_{cellulose}$) in a drought‐prone, temperate grassland ecosystem. A new allocation‐and‐growth model was designed and added to an $^{18}$O‐enabled soil–vegetation–atmosphere transfer model (MuSICA) to predict seasonal (April–October) and multi‐annual (2007–2012) variation of δ$^{18}$O$_{cellulose}$ and $^{18}$O‐enrichment of leaf cellulose (Δ$^{18}$O$_{cellulose}$) based on the Barbour–Farquhar model. Modelled δ$^{18}$O$_{cellulose}$ agreed best with observations when integrated over c. 400 growing‐degree‐days, similar to the average leaf lifespan observed at the site. Over the integration time, air temperature ranged from 7 to 22°C and midday relative humidity from 47 to 73%. Model agreement with observations of δ$^{18}$O$_{cellulose}$ (R$^{2}$ = 0.57) and Δ$^{18}$O$_{cellulose}$ (R$^{2}$ = 0.74), and their negative relationship with canopy conductance, was improved significantly when both the biochemical $^{18}$O‐fractionation between water and substrate for cellulose synthesis (ε$_{bio}$, range 26–30‰) was temperature‐sensitive, as previously reported for aquatic plants and heterotrophically grown wheat seedlings, and the proportion of oxygen in cellulose reflecting leaf water $^{18}$O‐enrichment (1 – p$_{ex}$p$_{x}$, range 0.23–0.63) was dependent on air relative humidity, as observed in independent controlled experiments with grasses. Understanding physiological information in δ$^{18}$O$_{cellulose}$ requires quantitative knowledge of climatic effects on p$_{ex}$p$_{x}$ and ε$_{bio}$.
Databáze: OpenAIRE