The momentum distribution of two bosons in one dimension with infinite contact repulsion in harmonic trap gets analytical
Autor: | Lorenzo Ugo Ancarani, Kamel Bencheikh, Luis Miguel Nieto |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Physics
Density matrix 12 Matemáticas Zero (complex analysis) General Physics and Astronomy Fermion 01 natural sciences 010305 fluids & plasmas Momentum Distribution (mathematics) Bosones 0103 physical sciences Fermión Center of mass 22 Física Hypergeometric function 010306 general physics Fermions Bosons Mathematical physics Boson |
Zdroj: | UVaDOC. Repositorio Documental de la Universidad de Valladolid instname |
DOI: | 10.1140/epjp/s13360-021-01671-x |
Popis: | Producción Científica For a harmonically trapped system consisting of two bosons in one spatial dimension with infinite contact repulsion (hard core bosons), we derive an expression for the onebody density matrix ρB in terms of center of mass and relative coordinates of the particles. The deviation from ρF, the density matrix for the two fermions case, can be clearly identified. Moreover, the obtained ρB allows us to derive a closed form expression of the corresponding momentum distribution nB(p). We show how the result deviates from the noninteracting fermionic case, the deviation being associated with the short-range character of the interaction. Mathematically, our analytical momentum distribution is expressed in terms of one and two variables confluent hypergeometric functions. Our formula satisfies the correct normalization and possesses the expected behavior at zero momentum. It also exhibits the high momentum 1/p4 tail with the appropriate Tan’s coefficient. Numerical results support our findings. Junta de Castilla y León y FEDER (proyecto BU229P18) |
Databáze: | OpenAIRE |
Externí odkaz: |