Key polynomials for simple extensions of valued fields

Autor: Herrera Govantes, Francisco Javier, Mahboub, Wael, Olalla Acosta, Miguel Angel, Spivakovsky, Mark
Přispěvatelé: Departamento de Algebra [Sevilla] (DALG-US), Universidad de Sevilla, Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Universidad de Sevilla / University of Sevilla, Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Journal of Singularities
Journal of Singularities, 2022, 25, pp.197-267. ⟨10.5427/jsing.2022.25k⟩
DOI: 10.5427/jsing.2022.25k⟩
Popis: Let $\iota:K\hookrightarrow L\cong K(x)$ be a simple transcendental extension of valued fields, where $K$ is equipped with a valuation $\nu$ of rank 1. That is, we assume given a rank 1 valuation $\nu$ of $K$ and its extension $\nu'$ to $L$. Let $(R_\nu,M_\nu,k_\nu)$ denote the valuation ring of $\nu$. The purpose of this paper is to present a refined version of MacLane's theory of key polynomials, similar to those considered by M. Vaqui\'e, and reminiscent of related objects studied by Abhyankar and Moh (approximate roots) and T.C. Kuo. Namely, we associate to $\iota$ a countable well ordered set $$ \mathbf{Q}=\{Q_i\}_{i\in\Lambda}\subset K[x]; $$ the $Q_i$ are called {\bf key polynomials}. Key polynomials $Q_i$ which have no immediate predecessor are called {\bf limit key polynomials}. Let $\beta_i=\nu'(Q_i)$. We give an explicit description of the limit key polynomials (which may be viewed as a generalization of the Artin--Schreier polynomials). We also give an upper bound on the order type of the set of key polynomials. Namely, we show that if $\operatorname{char}\ k_\nu=0$ then the set of key polynomials has order type at most $\omega$, while in the case $\operatorname{char}\ k_\nu=p>0$ this order type is bounded above by $\omega\times\omega$, where $\omega$ stands for the first infinite ordinal.
Comment: arXiv admin note: substantial text overlap with arXiv:math/0605193
Databáze: OpenAIRE