Distributed Prediction of Unsafe Reconfiguration Scenarios of Modular Robotic Programmable Matter

Autor: Benoît Piranda, Stéphane Bordas, Paweł Chodkiewicz, Julien Bourgeois, Pawel Holobut, Jakub Lengiewicz
Přispěvatelé: 811099, ANR-17-EURE-0002, ANR-15-IDEX-03, Université du Luxembourg, Horizon 2020: 2011/03/D/ST8/04089, 800150, ANR-16-CE33-0022-02 [sponsor]
Rok vydání: 2021
Předmět:
Differential equations
FOS: Computer and information sciences
0209 industrial biotechnology
Mechanical equilibrium
Modular robots
Iterative methods
Computer science
Stability (learning theory)
02 engineering and technology
Modular robotics
law.invention
Distributed framework
Electrical & electronics engineering [C06] [Engineering
computing & technology]

Multidisciplinaire
généralités & autres [C99] [Ingénierie
informatique & technologie]

Computer Science::Robotics
Computer Science - Robotics
03 medical and health sciences
Ingénierie mécanique [C10] [Ingénierie
informatique & technologie]

020901 industrial engineering & automation
0302 clinical medicine
law
Electrical and Electronic Engineering
Programmable matter
Computer science [C05] [Engineering
computing & technology]

Ingénierie électrique & électronique [C06] [Ingénierie
informatique & technologie]

business.industry
Multidisciplinary
general & others [C99] [Engineering
computing & technology]

Mechanical engineering [C10] [Engineering
computing & technology]

Control reconfiguration
Control engineering
Agricultural robots
Robotics
Modular design
Sciences informatiques [C05] [Ingénierie
informatique & technologie]

Iterative solutions
Sliding contacts
Computer Science Applications
Instability detections
Robotic systems
Control and Systems Engineering
030220 oncology & carcinogenesis
Distributed algorithms
Robot
business
Robotics (cs.RO)
Zdroj: IEEE Transactions on Robotics
info:eu-repo/grantAgreement/EC/H2020/800150
ISSN: 1552-3098
DOI: 10.1109/tro.2021.3074085
Popis: We present a distributed framework for predicting whether a planned reconfiguration step of a modular robot will mechanically overload the structure, causing it to break or lose stability under its own weight. The algorithm is executed by the modular robot itself and based on a distributed iterative solution of mechanical equilibrium equations derived from a simplified model of the robot. The model treats intermodular connections as beams and assumes no-sliding contact between the modules and the ground. We also provide a procedure for simplified instability detection. The algorithm is verified in the Programmable Matter simulator VisibleSim, and in real-life experiments on the modular robotic system Blinky Blocks. © 2004-2012 IEEE.
Databáze: OpenAIRE