Signal transducer and transcriptional activation 1 protects against pressure overload-induced cardiac hypertrophy
Autor: | Chaoyong He, Yuanyuan Tong, Li Gao, Hongxia Liu, Changlin Zhen |
---|---|
Rok vydání: | 2020 |
Předmět: |
0301 basic medicine
Dynamins Cardiomegaly Biochemistry Mitochondria Heart Muscle hypertrophy Cell Line 03 medical and health sciences Mice 0302 clinical medicine Fibrosis Genetics Medicine Animals Uncoupling Protein 2 STAT1 Molecular Biology Pressure overload Mice Knockout biology business.industry medicine.disease Cell biology Disease Models Animal 030104 developmental biology STAT1 Transcription Factor Apoptosis Knockout mouse cardiovascular system biology.protein Mitochondrial fission Signal transduction business 030217 neurology & neurosurgery Biotechnology Signal Transduction |
Zdroj: | FASEB journal : official publication of the Federation of American Societies for Experimental BiologyREFERENCES. 35(1) |
ISSN: | 1530-6860 |
Popis: | Signal transducers and transcriptional activation 1 (Stat1) is a member of the STATs family, and its role in various biological responses, including cell proliferation, differentiation, migration, apoptosis, and immune regulation has been extensively studied. We aimed to investigate its role in pathological cardiac hypertrophy, which is currently poorly understood. Experiments using H9C2 cardiomyocytes, Stat1, and IfngR cardiomyocyte-specific knockout mice revealed that Stat1 had a protective effect on cardiac hypertrophy. Using transverse aortic constriction (TAC)-induced cardiac hypertrophy in mice, we analyzed the degree of hypertrophy using echocardiography, pathology, and at the molecular level. Mice lacking Stat1 had more pronounced cardiac hypertrophy and fibrosis than wild-type TAC mice. Analysis of the molecular mechanisms suggested that Stat1 downregulated the mRNA levels of hypertrophy and fibrosis markers to inhibit cardiac hypertrophy, and promotes mitochondrial fission through the Ucp2/P-Drp1 pathway, enhancing mitochondrial function, and increasing compensatory myocardial ATP production in the compensatory phase for cardiac hypertrophy inhibition. Overall, this comprehensive analysis revealed that Stat1 inhibits cardiac hypertrophy by downregulating hypertrophic and fibrotic marker genes and enhancing the mitochondrial function to enhance cardiomyocyte function through the Ucp2/P-Drp1 signaling pathway. |
Databáze: | OpenAIRE |
Externí odkaz: |