Popis: |
S doping is an effective strategy to improve the potassium-ion storage performance of carbon-based materials. However, due to the large atomic radius of S and poor thermal stability, it is challenging to synthesize carbon materials with high sulfur content by solid-phase transformation. In this work, we designed a multi-cavity structure that can confine the molten S during heat treatment and make it fully react, then achieving high S doping (7.6 at. %). As we known, S doping can also effectively increase the active sites of carbon materials to obtain higher capacity. In addition, through different ex/in-situ characterizations and DFT calculations, we confirmed that the S atoms can effectively expand the interlayer spacing of carbon, which facilitates the intercalation/deintercalation reaction of K |