A Murnaghan-Nakayama rule for Grothendieck polynomials of Grassmannian type
Autor: | Nguyen, Duc-Khanh, Hiep, Dang Tuan, Son, Tran Ha, Thuy, Do Le Hai |
---|---|
Rok vydání: | 2021 |
Předmět: |
05E05
14M15 19E08 K-Theory and Homology (math.KT) Mathematics - Algebraic Geometry Mathematics::Algebraic Geometry Mathematics::K-Theory and Homology Mathematics::Category Theory Mathematics - K-Theory and Homology FOS: Mathematics Mathematics - Combinatorics Combinatorics (math.CO) Representation Theory (math.RT) Mathematics::Representation Theory Algebraic Geometry (math.AG) Mathematics - Representation Theory |
DOI: | 10.48550/arxiv.2110.06112 |
Popis: | We consider the Grothendieck polynomials appearing in the K-theory of Grassmannians, which are analogs of Schur polynomials. This paper aims to establish a version of the Murnaghan-Nakayama rule for Grothendieck polynomials of the Grassmannian type. This rule allows us to express the product of a Grothendieck polynomial with a power sum symmetric polynomial into a linear combination of other Grothendieck polynomials. Comment: 12 pages, 7 figures |
Databáze: | OpenAIRE |
Externí odkaz: |