Study of arterial blood pressure by a Windkessel-type model : influence of arterial functional properties

Autor: Jean-Michel Mallion, Jean-Philippe Baguet, Vincent Comparat, J. P. Siche, Badié Diourté
Přispěvatelé: Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 1999
Předmět:
Zdroj: Computer Methods and Programs in Biomedicine
Computer Methods and Programs in Biomedicine, Elsevier, 1999, 60, pp.11-22
ISSN: 0169-2607
Popis: Objective: to analyse the performance of a Windkessel blood pressure (BP) modeling of arterial compliance adjusted in a dynamic fashion according to a non-linear relationship between the arterial compliance (AC) and BP. Non invasive measurements of the radial BP waveform (MILLAR tonometry) were compared to those constructed by an electric simulator reproducing the model in a symmetrical network subdivided into 121 segments. We introduced at cardiac level the aortic stroke volume (Doppler echocardiography) and the dynamic values of compliance (relation of compliance-to pressure, constant or variable) whether the model was linear or non linear, measured by high resolution Doppler (NIUS 02) for each subject. Results: at the radial artery segment the modelled BP obtained by the non linear model of AC was not significantly different from the measured BP wave, while in the linear model (AC constant at mean BP level) the systolic BP was significantly underestimated. (*P
Databáze: OpenAIRE