Low-temperature low-power PECVD synthesis of vertically aligned graphene
Autor: | Eva Kovacevic, Chantal Boulmer-Leborgne, Cedric Pattyn, Mireille Gaillard, Neelakandan M. Santhosh, Andrea Jagodar, Uroš Cvelbar, Thomas Strunskus, A. Dias, Mohamed-Ramzi Ammar, Shahzad Hussain, Johannes Berndt |
---|---|
Přispěvatelé: | University of Ulster, Jozef Stefan Institute [Ljubljana] (IJS), Groupe de recherches sur l'énergétique des milieux ionisés (GREMI), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Instituto Superior Técnico, Universidade Técnica de Lisboa, Christian-Albrechts-Universität zu Kiel (CAU), Interfaces, Confinement, Matériaux et Nanostructures ( ICMN) |
Rok vydání: | 2020 |
Předmět: |
Materials science
Nucleation Bioengineering 02 engineering and technology 010402 general chemistry 7. Clean energy 01 natural sciences Catalysis law.invention X-ray photoelectron spectroscopy [PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] law Plasma-enhanced chemical vapor deposition General Materials Science Capacitively coupled plasma Electrical and Electronic Engineering Thin film ComputingMilieux_MISCELLANEOUS business.industry Graphene Mechanical Engineering General Chemistry Plasma 021001 nanoscience & nanotechnology 0104 chemical sciences Mechanics of Materials Optoelectronics 0210 nano-technology business |
Zdroj: | Nanotechnology Nanotechnology, Institute of Physics, 2020, 31 (39), pp.395604. ⟨10.1088/1361-6528/ab9b4a⟩ |
ISSN: | 1361-6528 0957-4484 1468-6996 1347-4065 0022-3727 |
DOI: | 10.1088/1361-6528/ab9b4a |
Popis: | The need for 2D vertical graphene nanosheets (VGNs) is driven by its great potential in diverse energy, electronics, and sensor applications, wherein many cases a low-temperature synthesis is preferred due to requirements of the manufacturing process. Unfortunately, most of today's known methods, including plasma, require either relatively high temperatures or high plasma powers. Herein, we report on a controllable synthesis of VGNs at a pushed down low-temperature boundary for synthesis, the low temperatures (450 °C) and low plasma powers (30 W) using capacitively coupled plasma (CCP) driven by radio-frequency power at 13.56 MHz. The strategies implemented also include unrevealing the role of Nickel (Ni) catalyst thin film on the substrates (Si/Al). It was found that the Ni catalyst on Si/Al initiates the nucleation/growth of VGNs at 450 °C in comparison to the substrates without Ni catalyst. With increasing temperature, the graphene nanosheets become bigger in size, well-structured and well separated. The role of Ni catalysts is hence to boost the growth rate, density, and quality of the growing VGNs. Furthermore, this CCP method can be used to synthesize VGNs at the lowest temperatures possible so far on a variety of substrates and provide new opportunities in the practical application of VGNs. |
Databáze: | OpenAIRE |
Externí odkaz: |