Stochastic Modeling of In Vitro Bactericidal Potency
Autor: | Péter Kevei, Máté Szalai, Dezső P. Virok, Anita Bogdanov |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
03.03. Egészségtudományok
medicine.drug_class General Mathematics Immunology Antibiotics Alpha (ethology) Chlamydia trachomatis Azithromycin medicine.disease_cause Models Biological Statistics - Applications Quantitative Biology - Quantitative Methods General Biochemistry Genetics and Molecular Biology Combinatorics Minimum inhibitory concentration medicine Potency Beta (finance) General Environmental Science Pharmacology Chemistry General Neuroscience Estimator 03.01. Általános orvostudomány Mathematical Concepts 60J85 92C70 In vitro Anti-Bacterial Agents Computational Theory and Mathematics General Agricultural and Biological Sciences Mathematics - Probability |
DOI: | 10.1007/s11538-021-00967-4 |
Popis: | We provide a Galton–Watson model for the growth of a bacterial population in the presence of antibiotics. We assume that bacterial cells either die or duplicate, and the corresponding probabilities depend on the concentration of the antibiotic. Assuming that the mean offspring number is given by $$m(c) = 2 / (1 + \alpha c^\beta )$$ for some $$\alpha , \beta $$ , where c stands for the antibiotic concentration we obtain weakly consistent, asymptotically normal estimator both for $$(\alpha , \beta )$$ and for the minimal inhibitory concentration, a relevant parameter in pharmacology. We apply our method to real data, where Chlamydia trachomatis bacterium was treated by azithromycin and ciprofloxacin. For the measurements of Chlamydia growth quantitative polymerase chain reaction technique was used. The 2-parameter model fits remarkably well to the biological data. |
Databáze: | OpenAIRE |
Externí odkaz: |