Popis: |
As on land, plants are the real producers in the sea, and on them depend all marine living resources and the basic sustainability of ecosystems. Primary production is performed by chlorophyll-bearing plants ranging from the tiny phytoplankton to the giant kelps through the process ofphotosynthesis. Zooplankton play an important role as secondary producers, and together with phytoplankton they support the vast assemblages of marine food chain with all their diversity and complexity. Data on chlorophyll pigments, phytoplankton and zooplankton are regarded as a sound basis for environmental appraisal of ecosystems. This paper presents a set of data collected from the Saudi Arabian coastal waters near the desalination plants in AI-Jubail. Materials were collected from six different sites covering the intake and discharge zones during cruises carried out in 1997–1998. Analyses of chlorophyll pigments were made using the spectrophotometric method. Plankton samples were collected using a Nansen plankton net with a mesh size of 75 μ and analyzed following standard procedures. Chlorophyll a, b, c and phaeophytin are the most commonly occurring pigments in seawater. Their concentrations showed wide fluctuation. The phytoplankton community was composed of 35 genera representing the Diatoms, Dinoflagellates and blue- green algae. Zooplankton were composed ofProtozoa, Coelenterata, Ctenophora, Aschelminthes, Annelida, Mollusca, Arthropoda, Echinodermata and Chordata. Arthropoda, represented by Cladocera, Copepoda and Crustacean larvae, formed the largest group followed by Chordata. The distribution of phyto- and zooplankton was examined and discussed on a seasonal, annual and inter-annual basis. In terms of species, overall species composition was not affected by plant discharge. The study brings out a greater understanding of the changes experienced by biotic communities as a result of impingement, entrainment and entrapment consequent to water passage through the plant structures. The study reflects the ecological relationships that the phytoplankton and the zooplankton of the region possess with respect to intake and discharge. Further, the study has brought to light a very redeeming feature of the ecosystem to sustain its productivity and planktonic abundance. It was observed that seawater temperature, conductivity and total suspended solids did not act as limiting factors. Besides throwing much light on the little known biological aspects of desalination sites, the data provided constitute a significant addition to the knowledge base of marine living resources in an industrial zone of Gulf coastal waters. |