Lower bounds of Cheeger-Osserman type for the first eigenvalue of then-dimensional fixed membrane problem
Autor: | Albert Avinyo, X. Mora |
---|---|
Rok vydání: | 1990 |
Předmět: |
Dirichlet problem
Pure mathematics N dimensional Applied Mathematics General Mathematics Mathematical analysis General Physics and Astronomy Mathematics::Spectral Theory Upper and lower bounds symbols.namesake Dirichlet boundary condition symbols Mathematics::Differential Geometry Ball (mathematics) Boundary value problem Laplace operator Eigenvalues and eigenvectors Mathematics |
Zdroj: | ZAMP Zeitschrift f�r angewandte Mathematik und Physik. 41:426-430 |
ISSN: | 1420-9039 0044-2275 |
DOI: | 10.1007/bf00959989 |
Popis: | In this note we derive new lower bounds for the first eigenvalue of the Laplacian in a boundedn-dimensional domain with Dirichlet boundary conditions. The lower bounds obtained are related to those of Cheeger (1970) [2] and Osserman (1977) [6], and they turn out to be sharper when the domain is not too far from being a ball. |
Databáze: | OpenAIRE |
Externí odkaz: |