Autor: |
Stefania Cannone, Maria Rafaella Greco, Hélène Guizouarn, Olivier Soriani, Richard Tomasini, Valeria Casavola, Katrine Zeeberg, Stephan Joel Reshkin, Rosa Angela Cardone |
Rok vydání: |
2020 |
Popis: |
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest of all cancers having one of the lowest five-year survival rates. One of its hallmarks is a dense desmoplastic stroma consisting in the abnormal accumulation of extracellular matrix (ECM) components, especially Collagen I. This highly fibrotic stroma embeds the bulk cancer (parenchymal) cells (CPCs), cancer stem cells (CSCs) and the main producers of the stromal reaction, the Cancer Associated Fibroblasts (CAFs). Little is known about the role of the acellular ECM in the interplay of the CAFs with the different tumor cell types in determining their phenotypic plasticity and eventual cell fate. Methods Here, we analyzed the role of ECM collagen I in modulating the effect of CAF-derived signals by incubating PDAC CPCs and CSCs grown on ECM mimicking early (low collagen I levels) and late (high collagen I levels) stage PDAC stroma with conditioned medium from primary cultured CAFs derived from patients with PDAC in a previously described three-dimensional (3D) organotypic model of PDAC. Results We found that CAFs (1) reduced CPC growth while favoring CSC growth independently of the ECM; (2) increased the invasive capacity of only CPCs on the ECM mimicking the early tumor and (3) favored vasculogenic mimicry (VM) especially of the CSCs on the ECM mimicking an early tumor. Conclusions: We conclude that the CAFs and acellular stromal components interact to modulate the tumor behaviors of the PDAC CPC and CSC cell types and drive metastatic progression by stimulating the behavior of each tumor cell type that contribute to metastasis: invasion in the CPCs and growth and angiogenesis in the CSCs. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|