Integral quantum cluster structures

Autor: Ken R. Goodearl, Milen Yakimov
Rok vydání: 2021
Předmět:
Zdroj: Duke Mathematical Journal. 170
ISSN: 0012-7094
DOI: 10.1215/00127094-2020-0061
Popis: We prove a general theorem for constructing integral quantum cluster algebras over Z[q±1/2], namely, that under mild conditions the integral forms of quantum nilpotent algebras always possess integral quantum cluster algebra structures. These algebras are then shown to be isomorphic to the corresponding upper quantum cluster algebras, again defined over Z[q±1/2]. Previously, this was only known for acyclic quantum cluster algebras. The theorem is applied to prove that, for every symmetrizable Kac–Moody algebra g and Weyl group element w, the dual canonical form Aq(n+(w))Z[q±1] of the corresponding quantum unipotent cell has the property that Aq(n+(w))Z[q±1]⊗Z[q±1]Z[q±1/2] is isomorphic to a quantum cluster algebra over Z[q±1/2] and to the corresponding upper quantum cluster algebra over Z[q±1/2].
Databáze: OpenAIRE