Formation of ZnSe nanoclusters in the layers of silicon dioxide by high-fluence ion implantation and annealing

Autor: A. K. Togambayeva, F. K omarov, Elke Wendler, L. Vlasukova, M. Makhavikou
Rok vydání: 2017
Předmět:
Zdroj: International Journal of Mathematics and Physics. 8:19-23
ISSN: 2409-5508
2218-7987
Popis: In this work we used the method of "hot" implantation of zinc and selenium ions into SiO2/Si structures in combination with subsequent heat treatment in order to form nanosized phases. Implantation modes for ionic synthesis chosen in such a way that the concentration of the embedded impurity is maximum approximately at the middle of the thickness of the dielectric layer. For the subsequent clustering of the impurity, it is necessary to create a high concentration of the implanted impurity at the maximum of the depth profile. The computer stimulation to select Implantation modes was carried out using the SRIM- 2013 program. Also we calculated the thickness of the silicon dioxide layer sprayed during high-dose implantation of zinc ions was. In this way, we have studied the formation of ZnSe precipitates in silicon dioxide by means of Zn (150 keV, 4×1016 cm−2) and Se (170 keV, 4×1016 cm−2) implantation at 550 °C and subsequent annealing at 1000 °C for 3 min. From analysis of XTEM images it has been showen that the use of "hot" implantation leads to the formation of small nanoclusters with sizes from 2 to 15 nm. Subsequent annealing results in the redistribution of nanoclusters within the implanted layer and the formation of large crystallites (up to 80 nm). To analyze the distribution of the introduced impurity throughout the sample depth the Rutherford backscattering (RBS) method was used. The band at 251-256 cm-1 associated with LO phonons of crystal ZnSe was registered in Raman spectra.
Databáze: OpenAIRE