EIGENTIME IDENTITIES OF FRACTAL FLOWER NETWORKS

Autor: Lifeng Xi, Jiangwen Gu, Qianqian Ye
Rok vydání: 2019
Předmět:
Zdroj: Fractals. 27:1950008
ISSN: 1793-6543
0218-348X
DOI: 10.1142/s0218348x19500087
Popis: The eigentime identity for random walks on networks is the expected time for a walker going from a node to another node. In this paper, our purpose is to calculate the eigentime identities of flower networks by using the characteristic polynomials of normalized Laplacian and recurrent structure of Markov spectrum.
Databáze: OpenAIRE