EIGENTIME IDENTITIES OF FRACTAL FLOWER NETWORKS
Autor: | Lifeng Xi, Jiangwen Gu, Qianqian Ye |
---|---|
Rok vydání: | 2019 |
Předmět: |
Fractal network
Discrete mathematics Computer science Applied Mathematics Node (networking) Random walk 01 natural sciences 010305 fluids & plasmas Identity (mathematics) Fractal Modeling and Simulation 0103 physical sciences Physics::Atomic Physics Geometry and Topology 010306 general physics Laplace operator |
Zdroj: | Fractals. 27:1950008 |
ISSN: | 1793-6543 0218-348X |
DOI: | 10.1142/s0218348x19500087 |
Popis: | The eigentime identity for random walks on networks is the expected time for a walker going from a node to another node. In this paper, our purpose is to calculate the eigentime identities of flower networks by using the characteristic polynomials of normalized Laplacian and recurrent structure of Markov spectrum. |
Databáze: | OpenAIRE |
Externí odkaz: |