The Bergman kernel function for intersections of some cylindrical domains and Lauricella's hypergeometric function

Autor: Jong Do Park
Rok vydání: 2021
Předmět:
Zdroj: Journal of Mathematical Analysis and Applications. 504:125398
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2021.125398
Popis: In this paper, we show that Lauricella's hypergeometric function F 8 has a close connection with the Bergman kernel for the intersection of two cylindrical domains defined by D ( p 1 , p 2 , p 3 ) : = { z ∈ C 3 : | z 1 | 2 p 1 + | z 2 | 2 p 2 1 , | z 1 | 2 p 1 + | z 3 | 2 p 3 1 } . We investigate the boundary behavior of the Bergman kernel on the diagonal ( z 1 , 0 , 0 ) . We also compute the explicit form of the Bergman kernel when ( p 1 , p 2 , p 3 ) = ( 1 , p 2 , p 3 ) and ( p , 1 , 1 ) . As a consequence, we show that D ( 1 , p 2 , p 3 ) is a Lu Qi-Keng domain. All results can be generalized to the intersection of cylindrical domains in any higher dimension.
Databáze: OpenAIRE