Target Detection via Cognitive Radars Using Change-Point Detection, Learning, and Adaptation
Autor: | Arye Nehorai, Yijian Xiang, Satyabrata Sen, Murat Akcakaya |
---|---|
Rok vydání: | 2020 |
Předmět: |
0209 industrial biotechnology
Wilcoxon signed-rank test business.industry Computer science Applied Mathematics Matched filter Detector Kernel density estimation CUSUM Pattern recognition 02 engineering and technology Identification (information) 020901 industrial engineering & automation Signal Processing Clutter Artificial intelligence business Change detection |
Zdroj: | Circuits, Systems, and Signal Processing. 40:233-261 |
ISSN: | 1531-5878 0278-081X |
DOI: | 10.1007/s00034-020-01465-z |
Popis: | Many radar detection algorithms that assume a stationary environment (clutter) have been proposed and analyzed over the years. However, in practice, changes in the nonstationary environment can perturb the parameters of the clutter distribution, or even alter the clutter distribution family, which can greatly deteriorate the target detection capability. To avoid such potential performance degradation, cognitive radar systems are envisioned which are required to rapidly realize the nonstationarity, accurately learn the new characteristics of the environments, and adaptively update the detector. In this paper, aiming to develop a fully cognitive radar for target detection in nonstationary environments, we propose a unifying framework that integrates (i) change-point detection of clutter distributions by using a data-driven cumulative sum (CUSUM) algorithm and its extended version, (ii) learning/identification of clutter distribution by applying sparse theory and kernel density estimation methods, and (iii) adaptive target detection by automatically modifying the likelihood-ratio test and corresponding detection threshold. Further, with extensive numerical examples, we demonstrate the achieved improvements in detection performance due to the proposed framework in comparison with a nonadaptive case, an adaptive matched filter method, and the clairvoyant case. We also use Wilcoxon rank-sum tests to evaluate the statistical significance of the performance improvements. |
Databáze: | OpenAIRE |
Externí odkaz: |