Summary of Schottky barrier height data on epitaxially grown n- and p-GaAs
Autor: | C.W. Louw, G. Myburg, M.J. van Staden, Walter E. Meyer, F.D. Auret |
---|---|
Rok vydání: | 1998 |
Předmět: |
Condensed matter physics
Chemistry Schottky barrier Fermi level Metals and Alloys Nanotechnology Surfaces and Interfaces Epitaxy Surfaces Coatings and Films Electronic Optical and Magnetic Materials Metal Electronegativity symbols.namesake visual_art Materials Chemistry symbols Density of states visual_art.visual_art_medium Melting point Molecular beam |
Zdroj: | Thin Solid Films. 325:181-186 |
ISSN: | 0040-6090 |
DOI: | 10.1016/s0040-6090(98)00428-3 |
Popis: | The Schottky barrier height values, as determined by the current‐voltage and capacitance ‐voltage techniques, of 43 metals which were fabricated by following the same cleaning procedure and using the same high-quality organometallic vapour phase epitaxially (OMVPE) grown (100) n-type GaAs material and 13 metals on molecular beam epitaxially grown (MBE) p-GaAs, are presented. Of all the metals involved in this study, Ga had the lowest mean Schottky barrier height of about 0.60 eV on n-GaAs and the highest on p-GaAs of 0.83 eV. Cu, Ag, Pt and Sb had the highest barrier heights of about 1 eV on n-GaAs. It was found that there exists no linear relationship between Schottky barrier height and metal work function as is suggested by the Schottky‐Mott theory, if all 43 metals are taken into account. Similar results were obtained if the metal work function was replaced by the Pauling or Miedema electronegativities. In contrast with this, if only a selected group of metals is chosen and more specifically those with the higher melting points which were deposited by means of an electron gun, an approximately linear tendency does exist between Schottky barrier height and metal work function. From this linear dependency, the density of states was determined to be about 6 〈 10 13 /eV per cm 2 and the average pinning position of the Fermi level as 0.55 eV below the conduction band. © 1998 Elsevier Science S.A. All rights reserved |
Databáze: | OpenAIRE |
Externí odkaz: |