An Omori–Yau maximum principle for semi-elliptic operators and Liouville-type theorems

Autor: Chanyoung Sung, Kyusik Hong
Rok vydání: 2013
Předmět:
Zdroj: Differential Geometry and its Applications. 31:533-539
ISSN: 0926-2245
Popis: We generalize the Omori–Yau almost maximum principle of the Laplace–Beltrami operator on a complete Riemannian manifold M to a second-order linear semi-elliptic operator L with bounded coefficients and no zeroth order term. Using this result, we prove some Liouville-type theorems for a real-valued C 2 function f on M satisfying L f ⩾ F ( f ) + H ( | ∇ f | ) for real-valued continuous functions F and H on R such that H ( 0 ) = 0 .
Databáze: OpenAIRE