An Omori–Yau maximum principle for semi-elliptic operators and Liouville-type theorems
Autor: | Chanyoung Sung, Kyusik Hong |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Differential Geometry and its Applications. 31:533-539 |
ISSN: | 0926-2245 |
Popis: | We generalize the Omori–Yau almost maximum principle of the Laplace–Beltrami operator on a complete Riemannian manifold M to a second-order linear semi-elliptic operator L with bounded coefficients and no zeroth order term. Using this result, we prove some Liouville-type theorems for a real-valued C 2 function f on M satisfying L f ⩾ F ( f ) + H ( | ∇ f | ) for real-valued continuous functions F and H on R such that H ( 0 ) = 0 . |
Databáze: | OpenAIRE |
Externí odkaz: |