K Nearest Neighbors Estimation of the Conditional Hazard Function for Functional Data

Autor: Kadi Attouch, Mohammed, Zohra Belabed, Fatima
Jazyk: angličtina
Rok vydání: 2014
DOI: 10.57805/revstat.v12i3.154
Popis: In this paper, we study the nonparametric estimator of the conditional hazard function using the k nearest neighbors (k-NN) estimation method for a scalar response variable given a random variable taking values in a semi-metric space. We give the almost complete convergence (its corresponding rate) of this estimator and we establish the asymptotic normality. Then the effectiveness of this method is exhibited by a comparison with the kernel method estimation given in Ferraty et al. ([12]) and Laksaci and Mechab ([15]) in both cases simulated data and real data.
REVSTAT-Statistical Journal, Vol. 12 No. 3 (2014): REVSTAT-Statistical Journal
Databáze: OpenAIRE