Two-step Deep Learning for Computational Imaging
Autor: | Guohai Situ, Ruibo Shang, Geoffrey P. Luke, Fei Wang, Kevin Hoffer-Hawlik |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | OSA Imaging and Applied Optics Congress 2021 (3D, COSI, DH, ISA, pcAOP). |
DOI: | 10.1364/cosi.2021.cm6b.5 |
Popis: | A two-step deep learning approach is proposed for computational imaging. This approach is robust to image model mismatches since physics priors are not needed and mitigates over-parameterization by training the network in 2 steps. |
Databáze: | OpenAIRE |
Externí odkaz: |