On vertex-disjoint cycles and degree sum conditions

Autor: Kazuhide Hirohata, Ariel Keller, Ronald J. Gould
Rok vydání: 2018
Předmět:
Zdroj: Discrete Mathematics. 341:203-212
ISSN: 0012-365X
DOI: 10.1016/j.disc.2017.08.030
Popis: This paper considers a degree sum condition sufficient to imply the existence of k vertex-disjoint cycles in a graph G . For an integer t ≥ 1 , let σ t ( G ) be the smallest sum of degrees of t independent vertices of G . We prove that if G has order at least 7 k + 1 and σ 4 ( G ) ≥ 8 k − 3 , with k ≥ 2 , then G contains k vertex-disjoint cycles. We also show that the degree sum condition on σ 4 ( G ) is sharp and conjecture a degree sum condition on σ t ( G ) sufficient to imply G contains k vertex-disjoint cycles for k ≥ 2 .
Databáze: OpenAIRE