Change in distribution of mobile genetic elements in genome of Drosophila melanogaster: Cause or consequence of selection for quantitative traits?

Autor: L. P. Zakharenko, M. P. Perepelkina, L. A. Vasil’eva
Rok vydání: 2010
Předmět:
Zdroj: Cell and Tissue Biology. 4:326-331
ISSN: 1990-5203
1990-519X
DOI: 10.1134/s1990519x10040048
Popis: The distribution pattern of the hobo transposon and Dm412 retrotransposon hybridization sites on the salivary gland polytene chromosomes from larvae of the Drosophila melanogaster isogenic strain 51 used to analyze the effect of the transposition of transposable elements (TEs) on selection for quantitative traits was studied. It was shown that no more than half of the Dm412 hybridization sites were retained 15 years after isogenization; the frequency of the Dm412 transposition varied from 2.0 × 10−4 to 8.8 × 10−5 sites per genome for generation depending on whether the appearance of the same hybridization sites in a part of individuals was considered as independent events or as the manifestation of the appearing sample heterogeneity. The distribution patterns of hobo hybridization sites in two isofemale strains derived from the isogenic strain 51 differed much more markedly; the number of the hobo sites in one of the derivative strains was threefold smaller than in the other one and only some of the sites were common. Within each derivative strain, the TE distribution was uniform, which suggests that inbreeding had no effect on Dm412 activity in this strain. The rates of change in the distribution patterns of various TE in the strain 51 corresponded to their spontaneous transposition rates. Since the isogenic strain accumulates polymorphism in the TE distribution without selection, the TEs are more likely to be the markers of selection events rather than their inducers. Thus, when studying the effects of various environmental factors on TE transposition even in isogenic strains, it is necessary to perform additional close inbreeding to reduce the potential polymorphism.
Databáze: OpenAIRE