ANALISIS PERFORMANSI SISTEM KLASIFIKASI KANKER KULIT MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK

Autor: Dian Ayu Nurlitasari, Rita Magdalena, R Yunendah Nur Fu'adah
Rok vydání: 2022
Zdroj: JOURNAL OF ELECTRICAL AND SYSTEM CONTROL ENGINEERING. 5:91-99
ISSN: 2549-6298
2549-628X
DOI: 10.31289/jesce.v5i2.5691
Popis: Kanker kulit adalah salah satu kanker ganas yang banyak ditemukan di Indonesia dan dapat menyebabkan kematian. Diagnosis kanker kulit dilakukan secara manual oleh dokter kulit melalui proses biopsi dan mikroskopis, namun proses ini memakan waktu lama dan membawa risiko kecelakaan selama proses biopsi. Sedangkan diagnosis dini menunjukkan lebih dari 90% dapat disembuhkan, dan diagnosis yang terlambat menunjukkan kurang dari 50% dapat disembuhkan.Pada Tugas Akhir ini diusulkan metode Convolutional Neural Network (CNN) menggunakan arsitektur Alexnet untuk mengklasifikasikan kanker kulit. Eksperimen dilakukan dengan menggunakan dataset yang diperoleh dari dataset International Skin Imaging Collaboration (ISIC) sebanyak 4000 citra kondisi kanker kulit dermatofibroma, melanoma, nevus pig-mentosus, dan karsinoma sel skuamosa, yang terdiri dari 1000 citra di setiap kelas. Dataset tersebut akan digunakan sebagai data latih dan data validasi dengan distribusi persentase data latih 80% dan data validasi 20%. Jadi jumlah data latih yang digunakan adalah 3200 citra kanker kulit. Sedangkan jumlah data validasi yang digunakan adalah 800 citra. Parameter terbaik yang digunakan dalam sistem klasifikasi kanker kulit ini antara lain menggunakan ukuran citra 64x64 piksel pada proses pre-processing, menggunakan Adam optimizer, learning rate 0,0001, epoch 20 dan batch size 16. Hasil pengujian menunjukkan bahwa sistem dapat mengklasifikasikan kulit kanker menurut kelasnya, dengan tingkat akurasi 99,50%, nilai presisi dan recall 99,75%, nilai f1-score 99,50%, dan nilai loss 0,0223. Berdasarkan hasil kinerja sistem, menunjukkan bahwa model yang dibuat menjanjikan untuk menjadi alat deteksi dini kanker kulit oleh dokter kulit dan dapat membantu mengurangi resiko keterlambatan diagnosis dini.
Databáze: OpenAIRE