Application of dimensionality reduction technique to improve geophysical log data classification performance in crystalline rocks

Autor: Yao Yevenyo Ziggah, Xiurong Cao, Heping Pan, Margaret Oloo, Huolin Ma, Ahmed Amara Konaté, Nashir Khan
Rok vydání: 2015
Předmět:
Zdroj: Journal of Petroleum Science and Engineering. 133:633-645
ISSN: 0920-4105
DOI: 10.1016/j.petrol.2015.06.035
Popis: In this study, dimensionality reduction technique to improve geophysical log data classification performance in crystalline rocks is presented. In fact, in complex geological situations such as the study area in context, more complex nonlinear functional behaviors exist for well log classification purpose; thus posing challenges in accurate identification of log curves for this purpose. Dimensionality reduction (DR) using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were used here to reduce the dimensionality of the original log set of Chinese Continental Scientific Drilling Main Hole to a convenient size, and then feed the reduced-log set into the classifiers. Three classifiers were addressed, namely, Support vector Machines, Feed forward Back Propagation and Radial Basis Function Neural Networks in the classification of metamorphic rocks. The strategy of combining dimensionality reduction methods and classifiers was demonstrated and discussed. The results showed that the reduced log sets found from DR can separate the metamorphic rocks types better or almost as well as the original log set. Therefore LDA and PCA can be suitable to be performed before geophysical well log data classification in the context of crystalline rocks.
Databáze: OpenAIRE