Tensor Methods for Solving Symmetric $${\mathcal {M}}$$ M -tensor Systems
Autor: | Xiao-Qing Jin, Yimin Wei, Ze-Jia Xie |
---|---|
Rok vydání: | 2017 |
Předmět: |
Polynomial (hyperelastic model)
Numerical Analysis Pure mathematics Applied Mathematics General Engineering 010103 numerical & computational mathematics 01 natural sciences Theoretical Computer Science 010101 applied mathematics Computational Mathematics symbols.namesake Computational Theory and Mathematics Tensor (intrinsic definition) symbols 0101 mathematics Newton's method Software Mathematics |
Zdroj: | Journal of Scientific Computing. 74:412-425 |
ISSN: | 1573-7691 0885-7474 |
DOI: | 10.1007/s10915-017-0444-5 |
Popis: | Tensor systems involving tensor-vector products (or polynomial systems) are considered. We solve these tensor systems, especially focusing on symmetric $${\mathcal {M}}$$ -tensor systems, by some tensor methods. A new tensor method is proposed based on the rank-1 approximation of the coefficient tensor. Numerical examples show that the tensor methods could be more efficient than the Newton method for some $${\mathcal {M}}$$ -tensor systems. |
Databáze: | OpenAIRE |
Externí odkaz: |