Enhanced Photocatalytic Degradation Activity of 2-D Graphitic Carbon Nitride-SnO2 Nanohybrids

Autor: Sakthivel Thangavel, Ashwini Kumar, Gunasekaran Venugopal, Priya Arulselvi Ramasubramanian, Kiran Preethi Kirubakaran, Gouthami Nallamuthu, Vinesh Vasudevan
Rok vydání: 2019
Předmět:
Zdroj: Journal of Nanoscience and Nanotechnology. 19:3576-3582
ISSN: 1533-4880
DOI: 10.1166/jnn.2019.16033
Popis: In this paper, we report on the facile synthesis of graphitic carbon nitride (g-C3N4)-tin oxide (SnO2) nanohybrid as an efficient photocatalyst prepared via sol–gel method. SnO2 nanoparticles are pointcontacted with g-C3N4. The results of physio-chemical characterizations such as SEM-EDAX, XRD, BET, FT-IR and UV-DRS spectra reveal the successful formation and integration of nanohybrid. The photocatalytic activity has been studied by using methylene-blue as a model dye for degradation. It has been observed that the pseudo-first order rate constant was increased up to 1.78 times compared with pure SnO2. The enhanced photocatalytic activity was ascribed from the inhibition of electron–hole recombination where g-C3N4 nanosheets acts as an electron receiver from SnO2 via point contact. This mechanism is further verified via photoluminescence spectra. Our results prominently show new insights and potential applications of g-C3N4-SnO2 nanohybrids in the waste water treatment and environmental remediation sectors.
Databáze: OpenAIRE