d-Distance Coloring of Generalized Petersen Graphs P(n, k)

Autor: Ramy Shaheen, Samar Jakhlab, Ziad Kanaya
Rok vydání: 2017
Předmět:
Zdroj: Open Journal of Discrete Mathematics. :185-199
ISSN: 2161-7643
2161-7635
DOI: 10.4236/ojdm.2017.74017
Popis: A coloring of G is d-distance if any two vertices at distance at most d from each other get different colors. The minimum number of colors in d-distance colorings of G is its d-distance chromatic number, denoted by χd(G). In this paper, we give the exact value of χd(G) (d = 1, 2), for some types of generalized Petersen graphs P(n, k) where k = 1, 2, 3 and arbitrary n.
Databáze: OpenAIRE