d-Distance Coloring of Generalized Petersen Graphs P(n, k)
Autor: | Ramy Shaheen, Samar Jakhlab, Ziad Kanaya |
---|---|
Rok vydání: | 2017 |
Předmět: |
Discrete mathematics
020206 networking & telecommunications Generalized Petersen graph 0102 computer and information sciences 02 engineering and technology Complete coloring 01 natural sciences Brooks' theorem Combinatorics Greedy coloring Edge coloring 010201 computation theory & mathematics Petersen family 0202 electrical engineering electronic engineering information engineering Fractional coloring Mathematics |
Zdroj: | Open Journal of Discrete Mathematics. :185-199 |
ISSN: | 2161-7643 2161-7635 |
DOI: | 10.4236/ojdm.2017.74017 |
Popis: | A coloring of G is d-distance if any two vertices at distance at most d from each other get different colors. The minimum number of colors in d-distance colorings of G is its d-distance chromatic number, denoted by χd(G). In this paper, we give the exact value of χd(G) (d = 1, 2), for some types of generalized Petersen graphs P(n, k) where k = 1, 2, 3 and arbitrary n. |
Databáze: | OpenAIRE |
Externí odkaz: |