Combinatory Classes of Compositions with Higher Order Conjugation
Autor: | Augustine O. Munagi |
---|---|
Rok vydání: | 2019 |
Předmět: |
Generalization
010102 general mathematics Generating function 0102 computer and information sciences Extension (predicate logic) Composition (combinatorics) 01 natural sciences Combinatorics 010201 computation theory & mathematics Enumeration Discrete Mathematics and Combinatorics Order (group theory) 0101 mathematics Reciprocal Mathematics |
Zdroj: | Annals of Combinatorics. 23:917-934 |
ISSN: | 0219-3094 0218-0006 |
Popis: | We consider certain classes of compositions of numbers based on the recently introduced extension of conjugation to higher orders. We use generating functions and combinatorial identities to provide enumeration results for compositions possessing conjugates of a given order. Working under some popular themes in the theory, we show that results for these compositions specialize to standard results in a natural way. We also give a generalization of MacMahon’s identities for inverse-conjugate compositions and discuss inverse-reciprocal compositions. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |