Fibroin-Alginate Scaffold for Design of Floating Microspheres Containing Felodipine

Autor: Pallavi Velapure, Harinath N. More, Shailesh Dugam, Prashant Rathod, Namdeo R. Jadhav
Rok vydání: 2020
Předmět:
Zdroj: Journal of Pharmaceutical Innovation. 16:226-236
ISSN: 1939-8042
1872-5120
Popis: The objective of present work was to develop fibroin-sodium alginate floating microspheres of felodipine (FD) showing modified release. Binary polymer system of fibroin-sodium alginate was used to prepare microspheres by spray drying technique. Thus, FD loaded microspheres obtained were evaluated for % drug content, % entrapment efficacy, particle size, micromeritics, FT-IR, DSC, XRD, floatability profile, mucoadhesion, in vitro drug release, and accelerated stability studies. The drug content of FD-loaded microspheres (F1–F5) was in the range of 68.55 ± 1.20 to 78.21 ± 0.54 and entrapment efficacy 45.93 ± 0.41 to 61.60 ± 0.72%. The particle size varied from 60.33 ± 0.64 to 66.87 ± 0.85 μm. Acceptable Carr’s compressibility index and angle of repose demonstrated excellent flowability of microspheres (F1–F5). The FT-IR showed no chemical interactions between FD and polymers. The DSC and XRD indicated that FD was partially crystalline in microspheres. Floating parameters for optimized batch F2 were floating lag time10–15 s and floating time > 12 h. Floating buoyancy is 96.51 ± 0.66%. The in vitro drug dissolution kinetics of optimized F2 batch in 0.1NHCl and FSSGF demonstrated % drug release up to 80.42 ± 0.86% in 0.1NHCl and 84.64 ± 0.30% in FSSGF following Peppas model. Electrostatic repulsion between polymers successfully enabled the design of FD-loaded floating microspheres by spray drying. Excellent floating profile and extended release for 12 h, as per USFDA guidelines, have been demonstrated by the fibroin-sodium alginate binary composite system. In the future, fibroin-sodium alginate scaffold can be successfully used for tailor-made floating and release profiles of drugs belonging to different solubility classes.
Databáze: OpenAIRE