MULTITRANSITIVITY OF CALOGERO-MOSER SPACES

Autor: Alimjon Eshmatov, Farkhod Eshmatov, Yuri Berest
Rok vydání: 2015
Předmět:
Zdroj: Transformation Groups. 21:35-50
ISSN: 1531-586X
1083-4362
DOI: 10.1007/s00031-015-9332-y
Popis: Let G be the group of unimodular automorphisms of a free associative ℂ-algebra on two generators. A theorem of G. Wilson and the first author [BW] asserts that the natural action of G on the Calogero-Moser spaces Cn is transitive for all n ϵ ℕ. We extend this result in two ways: first, we prove that the action of G on Cn is doubly transitive, meaning that G acts transitively on the configuration space of ordered pairs of distinct points in Cn; second, we prove that the diagonal action of G on \( {C}_{n_1}\times {C}_{n_2}\times \cdots \times {C}_{n_m} \) is transitive provided n1, n2, …, nm are pairwise distinct numbers.
Databáze: OpenAIRE