A multi-hop routing algorithm for WSNs based on compressive sensing and multiple objective genetic algorithm

Autor: János Levendovszky, Mohammed Al Mazaideh
Rok vydání: 2021
Předmět:
Zdroj: Journal of Communications and Networks. 23:138-147
ISSN: 1976-5541
1229-2370
DOI: 10.23919/jcn.2021.000003
Popis: Energy-efficiency and reliability are vital metrics of the robustness of Wireless Sensor Networks (WSNs). Various data reduction techniques are used to improve them, among them compressive sensing (CS) is a data reduction technique used to recover extensive data from fewer samples in case of sparse representation of sensor-readings. Unfortunately, energy-efficiency and accuracy are contradictory metrics, as increased accuracy requires a large number of measurements, and data transmissions. Therefore, in this paper, a CS-based algorithm is proposed for efficient datatransfer through WSNs, which uses multiple objective genetic algorithms (MOGA) to optimize the number of measurements, transmission range, and the sensing matrix. The algorithm aims at striking the right balance between energy-efficiency and accuracy. It constructs a path in a multi hop manner based on the optimized values. Numerical simulations and experiments show that Paretofront, which is the output of MOGA, helps the user to select the right combination of the number of measurements and the transmission range fitting the application at hand, and to strike a good balance between energy efficiency and accuracy. The results also demonstrate the existence of measurement matrices which lower mutual coherency improve the accuracy of CS.
Databáze: OpenAIRE